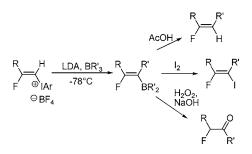
Stereoselective Generation of (*E*)- and (*Z*)-2-Fluoroalkylidene-Type Carbenoids from (2-Fluoro-1-alkenyl)iodonium Salts and Their Application for Stereoselective Synthesis of Fluoroalkenes

Shoji Hara,* Tong Guan, and Masanori Yoshida


Graduate School of Engineering, Hokkaido University, Sapporo 060-8628, Japan shara@eng.hokudai.ac.jp

Received April 10, 2006

ORGANIC LETTERS 2006

Vol. 8, No. 12 2639–2641

ABSTRACT

Alkylidene-type carbenoids, generated from (*Z*)- or (*E*)-(2-fluoro-1-alkenyl)iodonium salts by treatment with LDA, reacted with trialkylboranes to give (*E*)- or (*Z*)-(fluoroalkenyl)boranes stereoselectively. The resulting (fluoroalkenyl)borane can be used for the selective synthesis of (*E*)- or (*Z*)-fluoroalkenes, (*E*)- or (*Z*)-fluoroiodoalkenes, and α -fluoroketones.

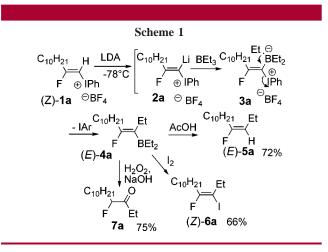
Alkylidene-type carbenoids, 1-halo-1-metalo-1-alkenes, have been used for C–C bond formations¹ or 1,1-dimetalo-1alkene synthesis.² They can be generated by halogen–metal exchange from 1,1-dihalo-1-alkenes or by hydrogen–metal exchange from 1-halo-1-alkenes.^{1,2} However, a strong base, such as an alkyllithium, is necessary for their generation, and stereoselective preparation of the alkylidene-type carbenoids was difficult.¹

On the other hand, an α -proton of alkenyliodonium salts is acidic and can be abstracted by a relatively weak base.

The resulting alkylidenecarbenes change to cyclopentene derivatives by an intermolecular C–H insertion reaction or to alkynes by a 1,2-migration reaction.³ However, alkylidene-type carbenoids, their precursors, have not been used for organic synthesis.⁴ Recently, we succeeded in the stereose-lective synthesis of both (*E*)- and (*Z*)-(2-fluoro-1-alkenyl)-iodonium salts (1)⁶ and used them for the stereoselective

^{(1) (}a) Braun, M. Angew. Chem., Int. Ed. **1998**, 37, 430. (b) Kasatkin, A.; Whitby, R. J. Tetrahedron Lett. **1997**, 38, 4857. (c) Kasatkin, A.; Whitby, R. J. J. Am. Chem. Soc. **1999**, 121, 7039.

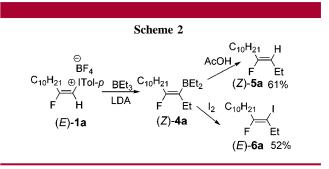
^{(2) (}a) Hata, T.; Kitagawa, H.; Masai, H.; Kurahashi, T.; Shimizu, M.; Hiyama, T. *Angew. Chem., Int. Ed.* **2001**, *40*, 790. (b) Kurahashi, T.; Hata, T.; Masai, H.; Kitagawa, H.; Shimizu, M.; Hiyama, T. *Tetrahedron* **2002**, *58*, 6381.


^{(3) (}a) Ochiai, M.; Takaoka, Y.; Nagao, Y. J. Am. Chem. Soc. **1988**, 110, 6565. (b) Ochiai, M.; Kunishima, M.; Tani, S.; Nagao, Y. J. Am. Chem. Soc. **1991**, 113, 3135. (c) Ochiai, M.; Uemura, K.; Masaki, Y. J. Am. Chem. Soc. **1993**, 115, 2528. (d) Sueda, T.; Nagaoka, T.; Goto, S.; Ochiai, M. J. Am. Chem. Soc. **1996**, 118, 10141.

⁽⁴⁾ The presence of the alkylidene-type carbenoids (alkylidenecarbeneiodonium ylides) as the precursor of alkylidenecarbene was shown by H-Dexchange at the α -proton of alkenyliodonium salts under basic conditions.⁵

^{(5) (}a) Ochiai, M.; Kunishima, M.; Fuji, K.; Shiro, M.; Nagao, Y. *Chem. Commun.* **1988**, 1076. (b) Stang, P. J.; Wingert, H.; Arif, A. M. *J. Am. Chem. Soc.* **1987**, *109*, 7235.

synthesis of various fluoroalkenes.⁷ During our continuous study of the stereoselective synthesis of fluoroalkenes using **1**, we found that the 2-fluoroalkylidene-type carbenoids (**2**) can be generated from **1** by treatment with LDA at low temperature and used for the reaction with trialkylboranes to give (*E*)- or (*Z*)-(fluoroalkenyl)boranes (**4**) stereoselectively. The resulting (fluoroalkenyl)borane **4** can be used for the selective synthesis of (*E*)- or (*Z*)-fluoroalkenes (**5**), (*E*)- or (*Z*)-fluoroiodoalkenes (**6**), and α -fluoroketones (**7**).


When a mixture of (*Z*)-(2-fluoro-1-dodecenyl)iodonium salt ((*Z*)-**1a**) and Et₃B in THF was treated with LDA at -78 °C, followed by AcOH, (*E*)-4-fluoro-3-tetradecene ((*E*)-**5a**) was stereoselectively obtained in 72% yield (Scheme 1).⁸

The formation of (*E*)-(1-ethyl-2-fluoro-1-dodecenyl)diethylborane ((*E*)-**4a**) as a precursor of (*E*)-**5a** was shown by the following results. The replacement of AcOH by CD₃-COOD gave (*E*)-3-deuterio-4-fluoro-3-tetradecene. The treatment of the reaction mixture with I₂ gave (*Z*)-4-fluoro-3iodo-3-tetradecene ((*Z*)-**6a**),¹⁰ an iodination product of **4a**, in 66% yield.¹¹ The oxidation of **4a** with H₂O₂ gave 4-fluoro-3-tetradecanone (**7a**) in 75% yield.

When a mixture of (E)-(2-fluoro-1-dodecyl)iodonium salt ((E)-1a) and Et₃B was treated with LDA as in the case of (Z)-1a, the expected (Z)-4-fluoro-3-tetradecene ((Z)-5a) was stereoselectively obtained; however, the yield was low, and a significant amount of 3-tetradecyne was also formed. As the fluoride and the borane occupy the trans configuration

(6) As for the synthesis of (*E*)-(2-fluoro-1-alkenyl)iodonium salts, see: (a) Hara, S.; Yoshida, M.; Fukuhara, T.; Yoneda, N. *Chem. Commun.* **1998**, 965. (b) Yoshida, M.; Kawakami, K.; Hara, S. *Synthesis* **2004**, 2821. As for the synthesis of (*Z*)-(2-fluoro-1-alkenyl)iodonium salts, see: (c) Yoshida, M.; Hara, S. *Org. Lett.* **2003**, *5*, 573. on the double bond, (*Z*)-**4a** is less stable than (*E*)-**4a**, and under the reaction conditions, elimination takes place to give 3-tetradecyne. The problem could be overcome by carrying out the reaction at lower temperature (-90 °C), and (*Z*)-**5a** could be obtained in 61% yield (Scheme 2).⁸ Thus, (*E*)- and

(Z)-5a could be stereospecifically prepared from (Z)- and

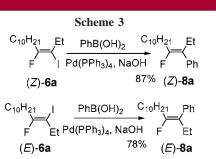
Table 1. Reaction of Trihexylborane with CarbenoidsGenerated from Alkenyliodonium Salts

enerated from Alkenyliodonium Salts				
	alkenyliodonium salts	reagent	product yie	eld (%) ^a
	(Z)-1a	AcOH	F H	72
	(Z)-1a	ICI AcONa C	$(E)-5b$ $F = \langle I \\ I_{10}H_{21} Hex \\ (Z)-6b$	65
	(Z)-1a	C H ₂ O ₂ NaOH	10 ^H 21 Hex F O 7b	82
	(<i>E</i>)-1a	AcOH C	$F Hex$ $10H_{21} H$ $(Z)-5b$	70
	$\overset{F}{\underset{(Z)-\mathbf{1b}}{\overset{\oplus}{\overset{\oplus}{\overset{\oplus}{\overset{\oplus}{\overset{\oplus}{\overset{\oplus}{\overset{\oplus}{\overset$	AcOH MeOO	$(E) \mathbf{C} \mathbf{C} \mathbf{C} \mathbf{C} \mathbf{C} \mathbf{H}_{2} \mathbf{E}_{8} \mathbf{H}_{8} \mathbf{E}_{8} \mathbf{C} \mathbf{C} \mathbf{C} \mathbf{H}_{2} \mathbf{E}_{8} \mathbf{H}_{8} \mathbf{E}_{8} $	71 (

^a Isolated yield based on alkenyliodonium salt.

(*E*)-1a, respectively. If the alkylidene carbenes were generated under the reaction conditions, the observed stereospecificity could not be explained. Therefore, Et₃B reacted with carbenoids (2), generated by the reaction of 1 with LDA, before decomposition to the carbenes, and (*E*)- or (*Z*)-4a was stereospecifically formed as shown in Schemes 1 and 2.¹³ (*E*)-4-Fluoro-3-iodo-3-tetradecene ((*E*)-6a) was also stereoselectively obtained in 52% yield by treatment with I₂ as in the case of (*Z*)-6a.

When Hex₃B was used for the reaction with **1a**, the corresponding (E)- or (Z)-8-fluoro-7-octadecene ((E)-**5b** or (Z)-**5b**), (Z)-8-fluoro-7-octadecene ((Z)-**6b**), and 8-fluoro-7-octadecanone (7b) were selectively obtained. Application of a functionalized (fluoroalkenyl)iodonium salt (1b)


⁽⁷⁾ Hara, S. In *Fluorine-Containing Synthons*; Soloshonok, V. A., Ed.; American Chemical Society: Washington, DC, 2005; p 120.

⁽⁸⁾ A J_{H-F} on a double bond in (E)-**5a** was smaller than that of (Z)-**5a** which shows that H and F on a double bond have a cis configuration in (E)-**5a**.⁹

⁽⁹⁾ Everett, T. S. In *Chemistry of Organic Fluorine Compounds II*; Hudlicky, M., Pavlath, A. E., Eds.; American Chemical Society: Washington, DC, 1995; p 1042.

⁽¹⁰⁾ Brown, H. C.; Hamaoka, T.; Ravindran, N. J. Am. Chem. Soc. **1973**, 95, 5786.

^{(11) &}lt;sup>19</sup>F NMR of (*Z*)-**6a** appeared at -75 ppm, and on the other hand, that of (*E*)-**6a** appeared at -95 ppm which is in good agreement with previously reported data for (*Z*)- and (*E*)-fluoroiodoalkenes.¹²

was also possible, and the fluoroalkene having an ester group ((E)-5c) could be obtained as shown in Table 1.

Trisubstituted fluoroalkenes (8a), which are difficult to prepare by the conventional methods,⁷ could be stereoselectively prepared from (*Z*)-6a or (*E*)-6a by applying them to the Suzuki–Miyaura coupling reaction.¹⁴ Thus, in the

presence of a Pd catalyst and a base, the cross-coupling reaction of (Z)-**6a** with phenylboronic acid took place to give (Z)-4-fluoro-3-phenyl-3-tetradecene (Z)-**8a** stereoselectively. Similarly, (E)-**8a** could be obtained from (E)-**6a** as shown in Scheme 3. Their stereochemistry was determined from NOEs of ¹HNMR analysis.

Supporting Information Available: Details of experimental procedures and characterization data for all new compounds. This material is available free of charge via the Internet at http://pubs.acs.org.

OL0608707

⁽¹²⁾ Zupan, M. Synthesis 1976, 473.

⁽¹³⁾ Zweifel, G.; Fisher, R. P.; Snow, J. T.; Whitney, C. C. J. Am. Chem. Soc. **1971**, *93*, 6309.

⁽¹⁴⁾ Miyaura, N.; Suzuki, A. Chem. Rev. 1995, 95, 2457.